If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5w^2-4w-1=9
We move all terms to the left:
5w^2-4w-1-(9)=0
We add all the numbers together, and all the variables
5w^2-4w-10=0
a = 5; b = -4; c = -10;
Δ = b2-4ac
Δ = -42-4·5·(-10)
Δ = 216
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{216}=\sqrt{36*6}=\sqrt{36}*\sqrt{6}=6\sqrt{6}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-6\sqrt{6}}{2*5}=\frac{4-6\sqrt{6}}{10} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+6\sqrt{6}}{2*5}=\frac{4+6\sqrt{6}}{10} $
| 2^c=8 | | (2/5)x-1/3=1-(4/5)x | | (3/4)x=x-4 | | 8e+4e+3=39 | | 9c=2c+21 | | 4x+2x+4x=360 | | -3(x-4)=8-7x | | -3z+-4=-13 | | 10x=-140 | | 6x-11=-4x+19 | | -16+4x=-33+26x | | 25=-5v+15 | | 3(x+-2)=-2(x+19) | | v+26/6=9 | | (33k-9)+(33k-9)+90+(20k+4)=360 | | 125/n=25 | | -6(x+6)=-2x-20 | | 2/3(b)+5=20-b | | -4g+12=60* | | 2(5x-7)=76 | | 24+8v=14v | | 16x=3x-3 | | 117=x+82 | | 13u=54+7u | | 450=40x+400 | | 5f+12=3f+18.f= | | -7(7x-10=-273 | | 14=-2(r+-17) | | -5x=-52 | | 3w–7(w–4)=–8 | | 10y=3y+42 | | 5x+10=22+x |